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A Frequency-Hopping Approach for Microwave
Imaging of Large Inhomogeneous Bodies

W. C. Chew and J. H. Lin

Abstract—A frequency-hopping approach is proposed to pro-
cess multifrequency CW microwave measurement data so that
larger dielectric bodies for microwave imaging can be recon-
structed with higher fidelity compared to a single-frequency
reconstruction. The frequency hopping approach uses only data
at a few frequencies, and hence can reduce data acquisition time
in a practical system. Moreover, the frequency-hopping approach
overcomes the effect of nonlinearity in the optimization procedure
so that an algorithm is not being trapped in local minima.
In this manner, larger objects with higher contrasts could be
reconstructed without a priori information. We demonstrate the
reconstruction of an object 10 wavelengths in diameter with
permittivity profile contrast larger than 1 : 2 without using a priori
information.

I. INTRODUCTION

ICROWAVE IMAGING involving large (c.f. wave-

length) inhomogeneous bodies using the inverse scat-
tering technique is highly nonlinear. This is because the
scattered fields are nonlinearly related to the inhomogeneity.
The nonlinearity is a consequence of multiple scattering [1].
Therefore, as the body becomes large compared to the wave-
length or when the contrasts of the inhomogeneity become
large, the nonlinear effect, or the multiple scattering effect,
becomes more pronounced.

However, this effect is less pronounced at lower frequencies
[2], [3]. Therefore, an inverse problem involving higher con-
trasts can be solved at lower frequencies. When the frequency
becomes higher, the inverse problem becomes more nonlinear.
An optimization approach is the robust way to solve the
inverse scattering problem. However, due to the nonlinearity,
the use of monofrequency data at a high frequency often
results in the inverse algorithm being trapped in local minima
due to the highly nonlinear nature of the problem. A way to
rectify this problem is to obtain a priori knowledge about the
scatterer, so that the highly nonlinear problem can be linearized
about a different background to alleviate the nonlinear effect
[4]. However, such a priori information is not available for
many applications in general. Therefore, when no a priori
information is assumed, it is difficult to invert data for in-
homogeneous scatterer larger than two or three wavelengths
when CW data are used.
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On the other hand, we have noticed that when broadband
data, or time-domain data are used, the inverted body could be
as much as eight wavelengths in diameter [5], [6]. The reason
being that Born-type approximations are increasingly good
at Jower frequencies. Therefore, the low frequency spectrum
of the time-domain data is aiding in the linearization of the
problem.

However, for many practical applications, high quality data
are collected at CW by time averaging. Multifrequency data
can thus be collected, but the measurement time is usually
linearly proportional to the number of frequency points where
the data are collected. In this letter, we show the successful use
of a small set of CW data measured over discrete frequencies.
By using the image reconstructed from low frequency data as
the initial guess to the higher frequency problem, we find that
the nonlinear effect can be mitigated. By slowly hopping from
lower frequencies to higher frequencies, we can reconstruct
objects which are as large as 10 wavelengths in diameter
with high fidelity. The image reconstructed is much better
than using the high-frequency data directly. Such a microwave
imaging algorithm needs no a priori information about the
inhomogeneous body.

II. INVERSE SCATTERING WITH CGFFT

In inverse scattering, one reconstructs the permittivity pro-
file of the scatterer from a column vector of measurement data,
&2, collected at different combinations of transmitter and
receiver locations [1]-[6]. The unknown scatterer is described
by the object function de(r’) = e(r’) — e (') where e(r’)
is the unknown permittivity profile to be solved for, and
ep(r’) is a guessed or estimated permittivity profile which is
assumed known. The measured data are nonlinearly related
to the object function because of multiple scattering [1]. A
way to solve this nonlinear problem is to iteratively optimize
a cost function, which is a measure of the difference of @55, .,
the measurement data, and $°°*, the simulation data from
an estimated object profile e,(r'). The simulated data are
generated by a rapid forward scattering solver. A cost function

can be defined as
S(€) = 5 ([[8%*(e) — Pans|” + belle — &) (D

where the column vectors € and ¢, contain the discretized
values of €(r’) and €,(r’) at 7’ defined over a mesh. Note
that the second norm in the above equation serves as the
regularization term to circumvent the inherently ill-conditioned
nature of the inverse scattering problems [1]. A Newton-
type minimization method, the conjugate gradient method, is
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Fig. 1. The comparison of the reconstructions (image and profile of the real part of the permittivity) from (a) the frequency hopping approach where data at
three frequencies (1, 2, and 3 GHz) are used, with (b) the monochromatic case where only the 3 GHz data is used. The reconstructed area is 5.56A Ay X 5.56Aw,
where A, is the wavelength in water. The reconstruction took 12 min on a CRAY-YMP. The pixel size is 0.16Aq.

used to minimize the cost function. At each iteration, the
problem is linearized, and the gradient of the functional is
required to calculate the conjugate vector and the Hessian to
find the step size. Hence, it is assumed that the functional
changes quadratically with the object profile. In calculating the
gradient and Hessian, the so called Fréchet derivative operator,
F = &/ 9¢ has to be found [7]. The operator F' establishes
a linear relationship between 6@ and de, or

6@ =F - be. (2)

In the above, §6® = $°° — @72 and de = € — €. More
explicitly

6‘I'j = 5¢lm = ¢Sca("'tl7 Trm, 6) - ¢§§gas(rtlyrrm)7 (3)

Fji = KEAT g4 (Trm, T3) 9o (T3, T41) )

Se; = 8e(r;) = e(ry) — ep(rs) &)

where j here stands for both subscripts { and m, and gs(r,7")
is the Green’s function of the inhomogeneous background,
which is assumed to be the current object function profile with
a permittivity of € (v'). When (2) is written explicitly, it is

8 =E¢im = ¥ kgAT go(Prm,75)ge(ri, 7o) 6 (rs)

~ /k% d’r’gb('rrm,r’)gb(r’,rﬁ)(ﬁe(n). (6)

The above integral is also known as the distosted Born
approximation of the volume integral equation of scattering,
and the Fréchet derivative is hence directly obtained by such
an approximation [3].

The unknown ¢(r') is found by minimizing (1). Then the
value of ¢(r’) is used as the new e,(r’). Consequently, g;(r, ")
has to be updated in each iteration by solving a forward scat-
tering problem. This method of solving the inverse problem,
called the distorted Born iterative method, has a second-order
convergence rate [3], [4], which is in contrast to the Born
iterative method [2] with a first-order convergence rate. An
efficient forward solver, such as CG-FFT [8], is invoked to
solve for gy(r,7’). Since the solution of the previous step is
used as an initial guess, it only needs a few inner iterations
to converge in the forward scattering problems. Over all, this
algorithm has an O(N,N;N;N logy N) complexity,! where
N, is the number of outer iterations for solving (1), IV, is
the number of inner iterations needed to solve the forward
problem by a CG-type method, IV, is the number of transmitter
locations used for the inverse problem, and NN is the number
of unknowns used in the forward scattering problem. For an
analysis of the computational complexity, see [9].

III. RESULTS AND CONCLUSION

We have applied the CG-FFT algorithm to real experimental
data [10], [11]. The data, from an experimental setup in
Barcelona, Spain, is based on a cylindrical array of 64 antennas
equispaced on a circle 25 cm in diameter at 2.45 GHz. Better
reconstruction could be obtained by using a priori information,
but without it, this algorithm, using only monochromatic data,
has apparently been trapped in a local minima.

Since the experimental data are not available for multi-
frequency, we demonstrate the frequency-hopping technique

1 Here, O means “order of.”
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Fig. 2. 'The reconstruction of the real part of the permittivity for an object
resembling a human arm model using the frequency-hopping approach where
the frequencies used are 0.5, 0.9, 1.65; and 3 GHz. The reconstructed area is
10.2X,, x 10.2X,,. The reconstruction took 60 min on a CRAY-YMP. The
pixel size is 0.16A,,.

using synthetic data. The permittivity values for the multifre-
quency synthetic data are derived from [12]. In this approach,
low-frequency data are first used to perform the image recon-
struction, and the resultant image is used as an initial guess
for the next higher-frequency reconstruction. In Fig. 1, shown

at the top of the previous page, we show the comparison of .

the image obtained by the frequency-hopping method and that
by using the high-frequency data directly. It is seen that the
frequency-hopping method could accurately reconstruct the
image quantitatively, while the monochromatic reconstruction
is inaccurate. No a priori information is assumed for the image
in both cases. The reconstruction for the imaginary part (ot
shown due to lack of space) is also superior in the frequency-
hopping approach. The object is immersed in water as in [10].

In Fig. 2, a 10-wavelength object is reconstructed using
the frequency-hopping method. Previously, such a large ob-
ject with such a contrast could not be reconstructed if only
monochromatic data are available.' The lowest frequency is
chosen so that the object size is about 1.5-2 wavelengths,
and the frequency can be roughly doubled until the highest
frequency is reached.

In conclusion, we have developed a method of reconstruct-
ing the images of large objects in a quantitative manner by
using multi-frequency information. The reconstruction of 10-
wavelength object with contrasts larger than 1:2 was not
possible previously, but with the frequency-hopping approach
this is now possible. Since the number of frequencies used is
in general small, the data collection time could be reduced. In
this reconstruction method, no a priori information is needed
about the object.

ACKNOWLEDGMENT

The computer‘time was provided by the National Center
for Supercomputing Applications (NCSA) at the Umvcrs1ty of
Illinois, Urbana-Champaign.

REFERENCES

[1]1 W. C. Chew, Waves and Fields in Inhomogeneous Media. New York:
Van Nostrand Reinhold, 1990.

[2] Y. M. Wang and W. C. Chew, “An iterative solution of the two-
dimensional electromagnetic inverse scattering problem,” Inz. J. Imaging
Syst. Technol., vol. 1, no. 1, pp. 100-108, 1989.

[3] W. C. Chew and Y. M. Wang, “Reconstruction of two-dimensional
permittivity distribution using the distorted Born iterative method,”
IEEE Trans. Medical Imaging, vol. 9, pp. 218-225, June 1990.

[4] N. Joachimowicz, C. Pichot, and J.-P. Hugonin, “Inverse scattering: An
iterative numerical method for electromagnetic imaging,” IEEE Trans.
Antennas Propagat., vol. 39, no. 12, pp. 1742-1752, Dec. 1991.

[5] M. Moghaddam and W. C. Chew, “Comparison of the Born iterative
method ‘and Tarantola’s method for an electromagnetic time-domain
inverse problem,” Int. J. Imaging Syst. and Technol., vol. 3, pp. 318-333,
1991.

[6] W. C. Chew, G. P. Otto, W. H. Weedon, J. H. Lin, C. C. Lu, Y. M.

Wang, and M. Moghaddam, “Nonlinear diffraction tomography—The

use of inverse scattering for imaging,” in Conf. Record, Twenty-Seventh

Asilomar Conf. Signals, Systems, and Computers, Pacific Grove, CA,

Nov. 1-3, 1993, vol. 1, pp. 120-129.

A. Tarantola, “The seismic reflection inverse problem,” in Inverse

Problems of Acoustic and Elastic Waves, F. Santosa, Y. H. Pao, W.

Symes, and C. Holland, Eds. Soc..Industr. Appl. Math., 1984.

[8] D. T. Borup and O. P. Gandhi, “Calculation of high-resolution SAR
distributions in biological bodies using the FFT algorithm and conjugate
gradient method,” IEEE Trans. Microwave Theory Tech., vol. 33, pp.
417-419, May 1985.

[9} W. C. Chew and Q. H. Liu, “Inversion of induction tool measurements

using the distorted Born iterative method and CG-FFHT,” IEEE Trans.

_ Geosci. Remote Sens., vol. 32, no. 4, pp. 878-884, July 1994.

A. Broquetas, J. Romeu, J. M. Rius, A. R. Elias-Fuste, A. Cardama,
and L. Jofre, “Cylindrical geometry: A further step in active microwave
tomography,” IEEE Trans. Microwave Theory Tech., vol. 39, no. S, pp.
836-844, 1991.
J. H. Lin, C. C. Lu, Y. M. Wang, W. C. Chew, J. J. Mallorqui,
A Broquetas, C. Pichot, and J.-C. Bolomey, “Processing microwave
experimental data with the distorted Born iterative method of nonlinear
inverse scattering,” in IEEE Antennas Propagat. Soc. Int. Symp. Dig.,
Ann Arbor, M1, June 28-July 2, 1993, Univ. of Michigan, vol. 1, pp.
500-503.
[12] M. A. Stuchly and S. S. Stuchly, “Dielectric properties of biological
substances—Tabulated,” J. Microwave Power, vol. 15, pp. 19-26, 1980.

[7

—

[10]

[11]



